HEAT EXCHANGE IN THE EVAPORATION REGION OF COOLANT
INSIDE A POROUS FUEL ELEMENT
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The article presents the results of the analytical investigation of the temperature
field and of heat exchange in the evaporation zone of coolant inside a porous fuel
element, with heat transfer by heat conduction across its boundaries taken into ac-~
count.

The extremely high intensity of heat exchange upon evaporation of a stream of liquid
inside heated porous metals makes it possible to produce smaller heat exchangers by using
porous materials in them. Porous fuel elements (FE) ensure the most favorable conditions
for investigating this process, smooth change of volumetric heat release in them makes it
possible to check its course, to obtain at the outlet a biphase stream with gradually in-
creasing vapor content, and to obtain a notion of the structure of the evaporating stream
[1]. 1In [2] the present authors developed an analytical model on the basis of which they
investigated in [3] the temperature state of a porous FE without regard to heat transfer
by heat conduction across the boundaries of the evaporation zome, i.e., maintaining adiabatic
conditions on them.

Experimental investigation of the process showed that the temperature distribution in-
side such a FE depends largely on the conditions of coolant outflow (Fig. 1l). Variant a cor-
responds to the outflow of a biphase stream, b corresponds to the outflow of superheated
vapor. Whereas in variant a the conditions are adiabatic at the beginning of the evapora~
tion zone (maximum of the temperature T of the porous material for Z = L), and the results
obtained in [2, 3] are correct for it, im variant b there takes place monotonic increase
of the temperature of the porous material, both at the beginning Z = L, and at the end Z = X
of the evaporation zone, and conditions here are not adiabatic. Heat transfer by heat conduc-
tion across its boundaries leads here to a substantial change of all the characteristics of
the process.

The temperature field of a FE illustrated in Fig, 1b is described by a system of equa-
tions including equations for calculating the temperatures of the porous material T, and of
the coolant t5 on the liquid (0 < Z < L, j = 1) and vapor (k < Z < §, § = 3) sectiohs of
single-phase Ilow:
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and the critical equation for determining the intensity h, of intraporous convective heat
exchange in the motion of a single-phase heat-transfer agent in porous cermets [4]

Nuj = 0.004Re;Pr;; Nuj = B/ (}‘i’/“)z; Re; = JE/)
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In the evaporation zone (L < Z < K) the temperature of the vapor phase is equal to the
local saturation temperature tz = tg(P), and the temperature distribution of the porcus
material is determined by the equation
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Fig. 1. Experimental and theoretical model of the pro-
cess of evaporative liquid cooling of a porous fuel ele-
ment (a) outflow regime of biphase stream; b) outflow
regime of superheated vapor). I) liquid region; II) evapo-
ration zone; III) vapor region. ,
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The order of magnitude of the intensity of volumetric heat exchange upon evaporation
of a 1iquid inside a porous material can be estimated with the aid of the following expres-
sion that was derived in [5]:
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The boundary conditions for the system of equations (1), (2) have the form:
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The coordinate Z = L of the beginning of the evaporation zone is determined from the
condition of the coolant attaining the state of saturation t; = tg, i = i', At the end of
the evaporation zone Z = K the enthalpy of the coolant is equal to the enthalpy i'' of sa-
turated vapor. The nucleation of vapor bubbles in motion of water inside porous metals
proceeds practically under conditions thermodynamic equilibrium [6], i.e., Ta—tg|z =1, & 1°C

The use of expression (3) for water with s = 0.19, I = 0.33, and d = 316; 100 um yields
the respective values hy, = 1.63° 10®; 1.63° 10*° W/(m®* °K). Hence follows that in porous
FE with mean particles size d < 300 ym with volumetric heat .flux demsity q, < 10° W/m® the
temperature of the material in the evaporation zone in the regime of outflow of a biphase
stream practically does not differ from the temperature tg of the vapor phase of the mix-
ture: Ta—ts = qv/hv = 1°C.

If we accept the assumption that the values of tg, h, in the evaporation zone are con-
stant, the solution of Eq. (2) with the boundary conditions (5) can be obtained in analyti-
cal form:

¥, =aexply(z— )] + bexp[—y (— DI + Go/ o} (8)
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Fig. 2. Dependence of the relative length k — I of the
evaporation zone (a), of the temperature difference ¢;(k)
between the porous material and the coolant at the end of
the region (b), and of the value of E, (formula (14)) (c¢)
on the parameters of the process: 1) y = 31.6; 2) 100.
Qvs W/m’; 82 (k), °C.
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The above expressions make it possible to calculate the change of temperature of porous
material, of the enthalpy of the coolant, of the discharge mass quantity of vapor of a bi-
phase stream in the evaporation zone. To determine the relative length k —~ . of the evapora-

tion zone, we use the last of conditions (6) which, taking (8)-(12) into account, may be writ-
ten as follows:

aesply (k— D] — bexp[—y (k— D] ——l}{m_wauk_z) o) =0, (13)
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Fig. 3. Dependence of the length of

the evaporation zone k — 7 (solid lines)
and of E; (dashed lines) on the tem-~
perature of superheated vapor flowing
out of the element, with parameters cor-
responding to points I, II in Fig. 2. ts
(8), °c.

The obtained expression is the characteristic equation for determining the value ofk —7 in
dependence on the parametersy, Bz, E;, 7, N1, N2, Ns. The solution of this equationis presented in
Fig. 2a in the form of the dependence of k — 7 on B, for two values of the parameter y. N,,
Nz are calculated by using the physical properties of water and of water vapor in the satura-
ted state at atmospheric pressure. In addition, the following was adopted: §o = 2°C; & =
10 mm; A = 10 W/ (m* °K); 7 = 0.052; Ey = 0.5. Under these conditions the values h, = 10%;
10° W/(m® * °K) correspond to the values of the parameter y = 31.6; 100.

The change of the parameter B, with fixed values of 8, X, ¢' occurs on account of a
‘change in the flow rate of the coolant G. Complete evaporation of this coolant stream and
its superheating inside the fuel element to the temperature ts(§) = 400°C corresponds to
the value of volumetric heat flux density q, shown on the additional axis of abscissas. It
should also be pointed out that with constant temperature ts;(§) the value of qv/hv can be
expressed in the following way: qy/hy = BaNs/y?.

Figure 2b shows the values of the excess temperature ¥,(k) = T2 — tg (superheating) of
the porous material at the end of the evaporation zone under the same conditions as given
in Fig. 2a, and Fig. 2c illustrates the change of the magmnitude ’
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The magnitude E; represents the ratio of the amount of heat supplied on account of
heat release in the liquid region and in the evaporation zone to the amount of heat absorbed
here by the coolant. In that case 1 — E, indicates the relative fraction of the heat expended
on heating and evaporating the coolant which is supplied by heat conduction from the vapor
region to the evaporation zone.

Figure 3 shows the dependence of the length of the evaporation zone k — 7 and of E; on
the temperature of the outflowing vapor ts(S§) when the parameters have values corresponding
to points I, II in Fig. 2.

On the basis of the data presented in Figs. 2, 3 we may conclude that for the conditions
under examination, heat transfer by heat conduction from the vapor region to the evaporation
zone causes a qualiative change of the nature of the heat exchange. The length of the eva-
poration zone decreases greatly in consequence of the increased length of the vapor region,
and when the intensity of volumetric heat exchange is hy, = 10® W/(m®- °K) (y = 31.6), the
thickness of the evaporation zone does not exceed k — 7 = 0,1 instead of k — 7 = (.67 when
there is no heat supply by heat conduction from the vapor region. It should be noted that
when k ~ 7 is small, it is correct to assume that tg 1s constant in the evaporation zone.

It follows from (8) that the temperature of the porous material in the evaporation
zone increases exponentially, and its increase is determined chiefly by the heat flux trans-
ferred from the vapor region. The contribution of the component q,/hy taking volumetric
heat release into account is very small. The existence of a finite temperature difference
Ta — tg with high intensity of heat exchange enables the evaporating coolant to absorb the
heat flux supplied by heat conduction. The proportion of heat E; expended on heating and
evaporating the coolant, supplied by volumetric heat release in the liquid region and in



the evaporation zone, is also small (Fig. 2¢). The main proportion of heat (1 — E,) is con~
ducted there by heat conduction from the vapor region.

‘With increasing temperature of the outflowing superheated vapor and of the porous ma-
terial in the vapor region, the length of the evaporation zone remains practically unchanged
(Fig. 3) but it gradually shifts to the inner surface of the element.

The obtained results enable us to determine the coordinate K of the end of the evapora-
tion zone and the temperature difference #;(k) = Tz — tg at that place, which are necessary
for solving Eqs. (1) with the boundary conditions (6), (7) for finding the temperature field
in the vapor region. It should be noted that the common solution for the liquid and vapor
regions with the boundary conditions (5), (6) has the same form as the expressions (14), (15)
and (29), (30) obtained in [3] under adiabatic conditions at the boundaries of the evapora-
tion zone. However, a change of the boundary conditions leads to a change of the integra-~
tion constants. In the notation of [3] the integration constants assume the following form
for the liquid region:
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and for the vapor region:
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The solution for the liquid region enables us to determine the magnitude of the super-
heating at its end T;-—t;[z =7 = Tz"tal = 1s which is used as one of the boundary condi-
tions in finding the temperature field of the evaporation zomne. .

The obtained results in determining the temperature state of the liquid region and of
the evaporation zone contain in explicit form the coordinate I of the beginning of the
evaporation zone which until now had been taken as independent parameter. The length k — 7
of the evaporation zone also depends on the coordinate I, and consequently also the coord-
inate k of its end. The magnitude k in turn determines the temperature field of the vapor
region.

The unique value of the magnitude 7 and the unambiguous solution of the entire problem
can be found as a result of subordinating the derived parametric solutions to the last un~
used boundary condition: the condition of continuity of the temperature of the porous ma-
terial at the end of the evaporation zone: Tz = Ts for z = k.

NOTATION

G, specific mass flow rate of the coolant; L, K, coordinates of the begimming and end,
respectively, of the evaporation zone; II, porosity; T, temperature of the porous material;
Z, coordinate; c, heat capacity of the coolant; d, mean particle size of the porous material;
hy, intensity of the volumetric intrapore heat exchange‘ i, enthalpy of the coolant; 7, k,
dimensionless coordinates of the begimming and end, respectively, of the evaporation zone;
qy» density of volumetric heat flux; s, saturation of the porous material with liquid phase;
t, temperature of the coolant; x, vapor content of the stream; 2z, dimensionless coordinate;
§; thickness of the porous element; ), thermal conductivity; u, dynamic viscosity. Sub~-
scripts: 1, 2, 3, relating to parameters in the liquid region, in the evaporation zone, and



in the vapor region, respectively; ', ", relating to the parameters of the liquid and of the
vapor in the state of saturationm.
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HYDRODYNAMICS OF RIVULET FLOW ON A VERTICAL SURFACE

I. M. Fedotkin, G. A. Mel'nichuk, UDC 536.248.5
F. F. Koval', and E. V, Klimkin

The flow of rivulets on a vertical surface is investigated theoretically and ex-
perimentally.

Liquid flow in the form of individual rivulets occurs upon the breakup of a liquid film,
Such a regime can occur, for example, in heat-transfer devices where heat is transferred
through evaporation— condensation of the heat-transfer agent [1] and in the emergency film
cooling of nuclear reactors. It is closely connected with the formation of dry patches on
a heated surface [2]. As investigations showed [1, 2], in such a regime rather intense
heat removal from the surface occurs without causing a sharp increase in its temperature.

The majority of the research has been devoted to problems of the hydrodynamics and sta-
bility of liquid film flow or the stability of rivulet flow [3-6].

The hydrodynamics of rivulet flow has still been inadequately studied. In [7], for
example, the connection between the flow rate in a rivulet and its width was obtained on the
basis of a solution of the Navier—Stokes equation for rivulet flow, and it was compared with
experiment and showed only qualitative agreement. The problem of describing rivulet flow is
divided into two parts: the first is to describe the shape of the surface of the rivulet;
the second is to find the velocity distribution in the rivulet.

In accordance with [7], we use the following physical model of rivulet flow. The shape
of the rivulet is determined only by surface tension; we neglect gravity. The rivulet is
represented in the form of a segment of a circle which does not vary during the entire flow.
All the physical properties of the liquid remain constant. The rivulet moves uniformly in
one direction under the action of gravity. We take the flow as fully developed and steady.
Shear stresses at the interface are absent.

The adopted physical model and coordinate system are shown in Fig. 1. Under the
adopted assumptions the Navier— Stokes equations take the form
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